Mostrar el registro sencillo del ítem
Feature selection : a perspective on inter-attribute cooperation
dc.contributor.author | Sosa Cabrera, Gustavo | |
dc.contributor.author | Guerrero, Santiago Gómez | |
dc.contributor.author | García Torres, Miguel | |
dc.contributor.author | Schaerer Serra, Christian Emilio | |
dc.contributor.other | Centro de Investigación en Matemática | es |
dc.date.accessioned | 2025-02-13T20:26:18Z | |
dc.date.available | 2025-02-13T20:26:18Z | |
dc.date.issued | 2023-08-15 | |
dc.identifier.citation | Sosa Cabrera, G., Gómez Guerrero, S., García Torres, M., & Schaerer, C. E. (2024). Feature selection: a perspective on inter-attribute cooperation. International Journal of Data Science and Analytics, 17, 139-151. https://doi.org/10.1007/s41060-023-00439-z | en |
dc.identifier.issn | 2364-415X | es |
dc.identifier.other | https://doi.org/10.1007/s41060-023-00439-z | es |
dc.identifier.uri | http://hdl.handle.net/20.500.14066/4534 | |
dc.description | Corresponding author. Correspondence to Gustavo Sosa Cabrera, gdsosa@pol.una.py | en |
dc.description.abstract | High-dimensional datasets depict a challenge for learning tasks in data mining and machine learning. Feature selection is an effective technique in dealing with dimensionality reduction. It is often an essential data processing step prior to applying a learning algorithm. Over the decades, filter feature selection methods have evolved from simple univariate relevance ranking algorithms to more sophisticated relevance-redundancy trade-offs and to multivariate dependencies-based approaches in recent years. This tendency to capture multivariate dependence aims at obtaining unique information about the class from the intercooperation among features. This paper presents a comprehensive survey of the state-of-the-art work on filter feature selection methods assisted by feature intercooperation, and summarizes the contributions of different approaches found in the literature. Furthermore, current issues and challenges are introduced to identify promising future research and development. | es |
dc.description.sponsorship | Consejo Nacional de Ciencia y Tecnología | es |
dc.language.iso | eng | es |
dc.publisher | Springer Nature | es |
dc.subject.classification | 7. Salud | es |
dc.subject.classification | 7.3. Prevención, vigilancia y control de enfermedades transmisibles y no transmisibles | es |
dc.subject.other | Complementarity | es |
dc.subject.other | Feature intercooperation | es |
dc.subject.other | Filter feature selection | es |
dc.subject.other | High-order dependency | es |
dc.subject.other | Information-theoretic measures | es |
dc.subject.other | Interaction | es |
dc.subject.other | Synergy | es |
dc.title | Feature selection : a perspective on inter-attribute cooperation | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.1007/s41060-023-00439-z | es |
dc.description.fundingtext | Programa Paraguayo para el Desarrollo de la Ciencia y Tecnología. Proyectos de investigación y desarrollo | es |
dc.identifier.essn | 2364-4168 | es |
dc.journal.title | International Journal of Data Science and Analytics | es |
dc.page.initial | 139 | es |
dc.page.final | 151 | es |
dc.relation.projectCONACYT | PINV15-706 | es |
dc.rights.accessRights | info:eu-repo/semantics/closedAccess | es |
dc.rights.copyright | © 2023, The Author(s), under exclusive licence to Springer Nature Switzerland AG | es |
dc.subject.ocde | 1. Ciencias Naturales | es |
dc.subject.ocde | 1.1. Matemáticas e Informática [matemáticas y otras áreas afines; informática y otras disciplinas afines (sólo desarrollo de software; el desarrollo de equipos debe clasificarse en ingeniería)] | es |
dc.volume.number | 17 | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos científicos
La colección comprende artículos científicos, revisiones y artículos de conferencia que son resultados de actividades científicas y de innovación financiadas por los programas PROCIENCIA y PROINNOVA.