dc.contributor.author | García Torres, Miguel | |
dc.contributor.author | Divina, Federico | |
dc.contributor.author | Gómez, Francisco | |
dc.contributor.author | Vázquez Noguera, José Luis | |
dc.contributor.other | Universidad Americana (PY) | es |
dc.contributor.other | Universidad Pablo de Olavide (ES) | es |
dc.date.accessioned | 2022-04-29T23:02:38Z | |
dc.date.available | 2022-04-29T23:02:38Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | http://hdl.handle.net/20.500.14066/3778 | |
dc.description.abstract | In classification tasks the increase in the number of dimensions of a data makes the learning process harder. In this context feature selection usually allows to induce simpler classifier models while keeping the accuracy. However, some factors, such as the presence of irrelevant and redundant features, make the feature selection process challenging. | es |
dc.description.sponsorship | CONACYT - Consejo Nacional de Ciencia y Tecnología | es |
dc.language.iso | eng | es |
dc.subject.classification | 7 Salud | es |
dc.subject.other | CANCER | es |
dc.subject.other | MELANOMA | es |
dc.subject.other | ONCOLOGIA | es |
dc.title | A Fast Multivariate Symmetrical Uncertainty Based Heuristic for High Dimensional Feature Selection. | es |
dc.type | research article | es |
dc.description.fundingtext | PROCIENCIA | es |
dc.journal.title | Entropy 2021: The Scientific Tool of the 21st Century | es |
dc.relation.projectCONACYT | PINV18-1199 | es |
dc.rights.accessRights | open access | es |